Package: ACV 1.0.2
ACV: Optimal Out-of-Sample Forecast Evaluation and Testing under Stationarity
Package 'ACV' (short for Affine Cross-Validation) offers an improved time-series cross-validation loss estimator which utilizes both in-sample and out-of-sample forecasting performance via a carefully constructed affine weighting scheme. Under the assumption of stationarity, the estimator is the best linear unbiased estimator of the out-of-sample loss. Besides that, the package also offers improved versions of Diebold-Mariano and Ibragimov-Muller tests of equal predictive ability which deliver more power relative to their conventional counterparts. For more information, see the accompanying article Stanek (2021) <doi:10.2139/ssrn.3996166>.
Authors:
ACV_1.0.2.tar.gz
ACV_1.0.2.zip(r-4.5)ACV_1.0.2.zip(r-4.4)ACV_1.0.2.zip(r-4.3)
ACV_1.0.2.tgz(r-4.4-any)ACV_1.0.2.tgz(r-4.3-any)
ACV_1.0.2.tar.gz(r-4.5-noble)ACV_1.0.2.tar.gz(r-4.4-noble)
ACV_1.0.2.tgz(r-4.4-emscripten)ACV_1.0.2.tgz(r-4.3-emscripten)
ACV.pdf |ACV.html✨
ACV/json (API)
# Install 'ACV' in R: |
install.packages('ACV', repos = c('https://stanek-fi.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/stanek-fi/acv/issues
Last updated 3 years agofrom:de3f903845. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win | OK | Nov 05 2024 |
R-4.5-linux | OK | Nov 05 2024 |
R-4.4-win | OK | Nov 05 2024 |
R-4.4-mac | OK | Nov 05 2024 |
R-4.3-win | OK | Nov 05 2024 |
R-4.3-mac | OK | Nov 05 2024 |
Exports:estimateLestimateLongRunVarestimateRhoinfoPhishiftMatrixtestLtsACV
Dependencies:clicolorspacecurlfansifarverforecastfracdiffgenericsggplot2gluegtableisobandjsonlitelabelinglatticelifecyclelmtestmagrittrMASSMatrixmgcvmunsellnlmennetpillarpkgconfigquadprogquantmodR6RColorBrewerRcppRcppArmadillorlangscalestibbletimeDatetseriesTTRurcautf8vctrsviridisLitewithrxtszoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Estimate out-of-sample loss | estimateL |
Test equality of out-of-sample losses of two algorithms | testL |
Perform time-series cross-validation | tsACV |